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Voice print analysis model for PAM without deep learning 
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Abstract 

We developed a rule-based voice print analysis AI model (here after Rule-based model) for PAM  that defines 
explicit identification species rules based on visually recognizable shapes and structures of voiceprints. 
Different from Machine-leaning AI model, Rule-based model does not require a large amount of training data, 
specialized expertise, and substantial computational resources. Using a small number of publicly available 
audio samples, Rule-based model was constructed and tested on the vocalizations of the Grey-faced 
Buzzard, achieving a recall rate of 80%. Even if the accuracy is lower than Machine-learning model, Rule-
based model may serve as a viable alternative in environments where the use of machine learning AI model 
is not feasible due to budgetary or technical constraints. 

 

1 Introduction 

In recent years,  many AI-based classification 
models for Passive Acoustic Monitoring (PAM) have 
been made (Appendix A). But these classification 
models cannot be applied easily in the field. One of 
the reasons is cost and time for development 
models. Developing machine learning models 
requires a large amount of training data for each 
species. It imposes a significant burden of cost, 
labor, and expertise. It is a major barrier to 
developing AI-based classification model. Another 
reason is low transfer ability. Most classification 
models are evaluated under the conditions similar to 
where the models were built. Although some 
general-purpose models such as BirdNET (Kahl et 
al., 2021) and the CNN model by Marchal et al. 
(2021) have demonstrated high accuracy across 
regions, these models require thousands of labeled 
samples, advanced deep learning techniques, and 
close collaboration with expert researchers. Then it 
is not easy to create an AI-based classification 
model under the limited budget and data.  

In light of these challenges, we explored alternatives 
to machine learning approaches. In the beginning, 
we examined some methods such as acoustic 
pattern matching, acoustic indices, and time-series 
or signal analysis. But we encountered, these 
approaches tend to be vulnerable to changes in 
recording equipment and background noise, and 
may not be reliable for stable detection under varied 
field conditions. As a potentially more robust option, 
we focused on the visual patterns of spectrograms 
that are recognizable to humans and defined explicit 
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detection rules based on the shapes and structures 
of voiceprints. As a first trial, the Grey-faced Buzzard 
(Butastur indicus) was selected as the target 
species due to the visual clarity of its arch-shaped 
voiceprint structure. 

2 Basic Structure of the Rule-based model 

The Rule-based model is designed to reflect how 
humans visually identify voiceprint patterns. Instead 
of analyzing the raw audio waveform directly, the 
Rule-based model first converts the voiceprint into a 
spectrogram(Figure 2-1), extracts the visual 
patterns(Figure 2-2), measures the visual patterns, 
evaluates measured figures, and identifies the 
target species. 

Identification is done by evaluating the measured 
figures referring the evaluation criteria. The 
evaluation criteria are set manually for each species 
in advance. Rather than generic optimization 
algorithms, Rule-based model relies on a human 
observer’s visual identification and uses those rules 
as evaluation criteria. Because of that Rule-based 
model enables working with a small number of 
samples. 

  
Figure 2-1: Converted spectrogram of Grey-faced 

Buzzard’s voiceprint  
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Figure 2-2: Extracted pattern of the spectrogram 

 

3 Mechanism of Rule-based model 

3.1 Features used for evaluation criteria 

We selected five core features(Table 3-1) and one 
supplement feature for evaluation criteria focusing 
on stability and visual clarity. Five core features are 
selected based on geometric analysis techniques 
that could explicitly quantify such features, including 
skeleton analysis and convexity defect detection. As 
a supplement detection, sound pressure 
prominence is used. Evaluation criteria were 
designed to support structural classification (e.g., 
arch or trident forms), noise filtering (via height and 
width), and distortion evaluation (via bottleneck 
structure).  

Acoustic indices are excluded from the core features. 
Because most acoustic indices were highly sensitive 
to recording devices and background noise. For 
example calculating the spectral centroid tended to 
fluctuate due to the influence of subtle noise. 

Shape-matching techniques such as ORB matching 
and template matching were also excluded. 
Because they failed to capture fine-grained 
differences, such as taper angle, indentation depth, 
or asymmetry. 

Table 3-1: Core features for evaluation criteria 

Measurement item Purpose 
Maximum frequency 
(main component) 

Identification of specific 
frequency bands 

Depth and angle of 
convexity defects Evaluation of uneven structure 

Number of skeleton 
branches 

Voiceprint structure classification 
(arch/trident/other) 

Bottleneck structure Voice distortion detection and 
quality evaluation 

Voiceprint height and 
width 

Exclusion of noise and abnormal 
shapes 

 

3.2 Visual pattern extraction method 

We adopted a fixed-length segments method to cut 
voiceprint. In terms of Grey-faced Buzzard the 
segment was set to 3 seconds in length with a 1-
second overlap, following Maegawa et al. (2022), to 
cover a typical call in a single segment. 

We used Python for audio processing  by combining 
modules listed in Appendix B. First, a bandpass filter 
was applied to isolate the frequency range relevant 
to the target species, followed by Short-Time Fourier 
Transform (STFT) to generate spectrograms. The 
resulting spectrograms were binarized (Figure 3-1), 
and the main outlines of visual pattern were 
extracted. 

From these extracted visual patterns, five core 
features and one supplement feature were 
measured for evaluation.  

  

  
Spectrogram binarized voiceprint 

Figure 3-1: Extracted visual pattern 

 

3.3 Evaluation Method 

Rule-based approach is used for evaluation the 
measured figures of extracted visual pattern. 
Measured figures are evaluated based on 
evaluation criteria. These criteria are designed 
manually to fit the species, reducing false detections 
from similar sounds or noise. To manage variability 
caused by environmental noise or individual 
differences, the criteria are defined with a certain 
margin of tolerance. The criteria were initially 
derived from sample data and were refined through 
repeated visual inspection and manual adjustment. 
Each measured figure is evaluated as a “hit” only if 
all the figures are satisfied the respective evaluation 
criteria; if any criteria was not met, the measured 
figure was evaluated as a “non-hit.” By manual 
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adjustment of the criteria for each species, this 
approach enables stable performance even when 
only a small number of samples are available. 

 

4. Accuracy Verification 

4.1 Data Used for setting evaluation criteria 

The data for setting the evaluation criteria of Grey-
faced Buzzard covers multiple countries, various 
devices, and many surrounding environments. The 
number of data is 16. 13 of which were obtained 
from the open-access bird sound database Xeno-
Canto, and the remaining 3 were independently 
recorded in Japan by the author. The Xeno-Canto 
data are recorded in China, Japan, Malaysia,  
Russian Federation, Taiwan, and Thailand. 

4.2 Data Used for model Verification 

For model verification, continuous audio recordings 
were collected using IC recorders installed at eight 
locations in Japan between May and June 2022. A 
total of 286 hours of audio data was used for the 
analysis. These recordings included a wide variety 
of natural and artificial background noise, such as 
wind, rivers, vehicles, and insects. As such, the 
verification data were intended to reflect real-world 
field conditions and were used to verify the model’s 
noise tolerance and species detection performance. 

The model performed detection using a sliding 
window of 3 seconds per segment. Then the 
evaluation results were aggregated into 1-minute 
units and identified species based on the number of 
hits and recall accuracy. 

 

4.3 Verification Results 

Identification results showed that the calls of the 
target species, the Grey-faced Buzzard, appeared 
for a total of 41 minutes within the 286 hours of 
recorded audio. The model successfully detected 33 
of these minutes, resulting in a recall rate of 80% 
(Table 4-2). Some false detections were observed, 
caused by calls from other species or strong 
background noise. Given the sporadic nature of 
target calls amid diverse background sounds, the 
model demonstrates practical usability. These 
findings indicate that the model is capable of 
detecting the species' calls from field recordings, 
even under varying environmental conditions and 
with a limited number of reference samples. 

 

Table 4-2: Detection Results Summary 

Total 
(Correct 
answers) 

Detected 
(TP) 

Not 
detected 

(FN) 

False 
positive 

(FP) 
Precision 

(%) 
Recall 

(%) 

41 33 8 1140 2.81 80.49 
 

5 Considerations 

The Grey-faced Buzzard, selected as the target 
species in this study, exhibits a distinctive arch-
shaped voiceprint that is visually recognizable and 
relatively easy for humans to identify, making it well-
suited for rule-based modeling. In contrast, small 
passerines with short and ambiguous calls, or 
species that share similar acoustic patterns, may be 
more difficult to distinguish due to the lack of clear 
structural features. Additionally, the method is not 
suitable for situations involving overlapping calls 
from multiple individuals (chorusing), where 
voiceprints may become severely distorted. 

Most of the sample data used in this study were 
recorded outside Japan, using diverse equipment 
and under varying environmental conditions. 
Nevertheless, the model demonstrated high 
detection accuracy when applied to domestic 
recordings, suggesting that for specific vocal 
phrases produced by a given species, it may be 
possible to apply a shared detection rule across 
different regions and recording environments. 

It should be noted that the evaluation in this study 
was based on a limited set of test data available at 
the time of analysis. Future work will involve 
expanding the target species and conducting more 
comprehensive performance assessments. 
Currently, new audio data are being collected, and 
improvements to the model are underway to support 
formal public release. 
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6 Conclusion 

This study developed a Rule-based model designed 
to detect bird vocalizations based on the distinctive 
voiceprint structure of a target species, and 
evaluated its effectiveness. Because the model 
operates using explicitly defined rules based on 
visual voiceprint patterns, it can be constructed with 
limited data and showed stable performance. In 
particular, this approach may serve as an effective 
alternative in contexts where it is difficult to secure 
the extensive sample datasets or high-level 
computational resources required for deep learning 
models. 

Although most of the sample data used to design the 
model were recorded outside Japan, the model 
maintained high detection accuracy when applied to 
domestic recordings, suggesting that for specific 
vocal phrases, detection rules may be transferable 
across regions and recording conditions. These 
findings indicate that Rule-based model can function 
effectively even under constraints of limited data and 
budget, and suggest its potential as a supportive tool 
for bird community surveys using Passive Acoustic 
Monitoring (PAM). 
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Appendix A. Overview of Prior Studies Using AI for Bird Vocalization Analysis 

System Region Target 
species AI method Training 

samples Cross-regional performance Citation 

BirdNET Germany, USA Multiple Machine learning (CNN) 22,960 Validated across multiple regions Kahl et al. 2021 

ARBIMON Puerto Rico Multiple Acoustic detector / Clustering No training localized system Aide et al. 2013 

OpenSoundscape USA Multiple Machine learning (Conventional) 2,318 Limited, no transferability tested Knight et al. 2022 

QSAS-Bird Japan Single Machine learning (CNN) private Unknown Fujitsu Web 

Goshawk model  Japan Single Machine learning (Conventional) 1,500 Performance declined Ueno & Kurihara 2016 

Sashiba CNN Japan Single Machine learning (CNN) 100 Performance declined Maegawa et al. 2022 

CallSeeker Canada Multiple Acoustic template matching / Clustering  No training Unknown Marchal et al. 2021 

Song Scope Canada Multiple Machine learning (classifier) 6,755 Unknown Marchal et al. 2021 

Kaleidoscope Pro Canada Multiple Machine learning (Clustering + classifier) 6,755 Unknown Marchal et al. 2021 

CNN (Marchal) Canada Multiple Machine learning (CNN) 6,755 Validated across multiple regions Marchal et al. 2021 

 

Appendix B. Supplementary Acoustic Features 

Library Name Version Primary Purpose License 
librosa 0.9.2 Extraction of audio features BSD 
opencv-python 4.5.4 Image processing and contour extraction Apache 2.0 
pydub 0.25.1 Audio format conversion (e.g., MP3 to WAV) MIT 
soundfile 0.12.1 Reading and writing audio files BSD 
matplotlib 3.4.3 Visualization (e.g., spectrograms, plots) PSF 
scipy 1.7.1 Numerical processing, filtering, peak analysis BSD 

 


