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Abstract	
In	 this	 study,	we	present	 an	AI-powered	Multi-Agent	 System	 (MAS)	designed	 to	 assess	 climate	 risks	
through	 a	 structured,	 semi-quantitative	 framework	 based	 on	 the	 IPCC	 risk	 concept.	 The	 system	 is	
composed	of	thematic	agents	specialized	in	analyzing	Exposure,	Vulnerability,	and	Hazard.	Each	agent	
leverages	speciJic	data	sources	and	tools,	ranging	from	digital	elevation	models	and	land	cover	datasets	
to	 online	 research	 capabilities	 and	 gridded	 climate	 projections	 from	 CMIP6	 models.	 We	 apply	 this	
framework	 to	 a	 case	 study	 involving	 seven	 Italian	 airports	 and	 four	 different	 climate	 hazards,	
demonstrating	the	potential	of	LLM-driven	agents	 in	supporting	climate	risk	assessments	 for	critical	
infrastructure.	

	

Introduction	
In	 the	 sixth	 Assessment	 Report	 (AR6),	 the	 Intergovernmental	 Panel	 on	 Climate	 Change	 (IPCC)	 has	
underlined	how	the	concept	of	risk	can	serve	as	framework	for	understanding	Climate	Change,	and	its	
relationship	with	impacts	and	adaptation	measures1.					

Risk	 is	deJined	as	 the	“result	of	 the	dynamic	 interactions	between	climate-related	hazards	[potential	
occurrence	of	a	physical	event]	with	the	exposure	[the	presence	of	people	or	infrastructure	that	could	
be	adversely	affected]	and	vulnerability	[the	propensity	to	be	adversely	affected]	of	the	affected	human	
or	ecological	system	to	the	hazards”2.		

This	 deJinition	 expands	 beyond	 the	 conventional	 view	 of	 risk	 as	 the	 product	 of	 likelihood	 and	
consequences	of	an	event.	It	allows	for	a	more	comprehensive	assessment	of	climate	risk,	which	can	also	
account	 for	 complex	 risks3,4	 and	 include	 physical	 hazards	 that	 are	 difJicult	 to	 deJine	 in	 terms	 of	
probability,	either	because	of	their	chronic	nature	or	due	to	insufJicient	scientiJic	understanding.		

Concurrently,	Climate	Services5,	which	are	meant	to	provide	the	decision	makers	with	the	appropriate	
information	and	knowledge	to	address	climate	risks6,	still	fall	short	of	their	potential	and	face	numerous	
challenges,	 including	 relevance,	 interdisciplinarity,	 scalability,	 and	 the	 ability	 to	 meet	 the	 needs	 of	
decision-makers7–9.	To	address	these	challenges,	Climate	Services	are	increasingly	integrating	emerging	
technologies,	 particularly	 Machine	 Learning	 (ML)	 and	 ArtiJicial	 Intelligence	 (AI),	 to	 enhance	 key	
components	 of	 their	 value	 chain,	 including	 data	 assimilation,	 predictive	 modeling,	 uncertainty	
quantiJication,	and	knowledge	synthesis10–13.	

As	Large	Language	Models	(LLMs)	gain	prominence,	the	climate	scientific	community	has	commenced	
to	 investigate	 their	 potential	within	 Climate	 Services	 applications14.	With	 the	 rapid	 advancement	 of	
LLMs	 and	 the	 introduction	 of	 concepts	 such	 as	 Artificial	 Intelligence	 Autonomous	 Agents	 and	
Augmented	Language	Models	(ALMs)15,	it	has	become	evident	that	LLMs	can	be	effectively	instructed	to	
perform	 highly	 specialized	 tasks	 with	 remarkable	 precision.	 In	 some	 instances,	 their	 performance	
surpasses	that	of	highly	educated	humans.	

However,	intricate	tasks	frequently	demand	multidisciplinary	expertise	and	surpass	the	capabilities	of	
a	 single	 AI	 agent.	 Consequently,	 Multi-Agent	 Systems	 (MAS)16	 	 have	 emerged,	 wherein	 multiple	
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autonomous	 agents	 collaborate	 within	 a	 structured	 framework	 to	 solve	 complex	 problems.	 When	
powered	 by	 AI,	 MAS	 can	 replicate	 human-like	 collaboration,	 enabling	 distributed	 reasoning,	 task	
delegation,	and	dynamic	problem-solving.	

Here,	 we	 present	 an	 AI-driven	Multi-Agent	 System	 (MAS)	 designed	 to	 perform	 climate	 change	 risk	
assessments	 in	 alignment	 with	 the	 conceptual	 framework	 deJined	 by	 the	 IPCC	 AR6.	 The	 proposed	
system	leverages	the	coordinated	interaction	of	specialized	AI	agents	within	a	modular	and	extensible	
architecture.	

With	this	work	we	aim	to	demonstrate	the	feasibility	of	applying	AI-powered	MAS	to	highly	speciJic	and	
multidisciplinary	 contexts,	 such	 as	 climate	 change	 risk	 assessment,	 where	 diverse	 expertise	 and	
heterogeneous	data	sources	must	be	 integrated	coherently.	Moreover,	 it	 lays	 the	groundwork	 for	 the	
operational	use	of	such	systems	in	Climate	Services,	highlighting	their	potential	to	evolve	alongside	the	
rapid	advancements	in	Large	Language	Models	(LLMs)	and	domain-specialized	AI	agents.	

We	 conducted	 a	 case	 study	of	 seven	 selected	 Italian	 airports	 to	 assess	 the	 risk	 associated	with	 four	
distinct	climate	hazards:	heatwaves,	cold	waves,	extreme	rainfall,	and	droughts.	As	many	other	critical	
infrastructure,	airports	are	expected	to	face	signiJicant	material	impacts	related	to	Climate	Change17–21.		

Methods	

Architecture	
The	 proposed	 tool	 is	 based	 on	 a	 Large	 Language	 Model	 (LLM)	 driven	 Multi-Agent	 System.	 The	
architecture	consists	of	three	main	thematic	agents,	each	responsible	for	conducting	an	analysis	related	
to	 Exposure,	 Vulnerability,	 and	 Hazard,	 respectively.	 Each	 agent	 is	 equipped	 with	 a	 distinct	 set	 of	
capabilities	tailored	to	its	speciJic	task.	These	agents	generate	detailed	technical	reports	outlining	the	
analytical	procedures	and	key	Jindings.	

Subsequently,		the	risk	is	deJined	using	a	semi-quantitative	approach,	which	mathematically	formalizes	
the	approach	of	the	so-called	risk	matrices22,23.	

A	Risk	Synthesis	Agent	assigns	standardized	scores	for	Exposure	(0–5),	Vulnerability	(1–5),	and	Hazard	
(1–5),	 along	with	a	 rationale	 justifying	each	score.	The	overall	 risk	 score	 is	 then	computed	with	 the	
following	procedure:	i)	the	three	scores	are	multiplied	to	obtain	a	preliminary	risk	score	(r),	ii)	the	Jinal	
risk	score	is	obtained	as:	

𝑅 = 5	%1 + 𝑒!"($!$!))
!&
	 𝐸𝑞. 1	

This	 normalization	 step	 is	 based	 on	 a	 logistic	 function	 and	 serves	 to	mitigate	 the	 disproportionate	
compression	of	intermediate-to-high	risk	combinations	that	arises	from	the	direct	multiplication	of	the	
three	scores.	We	set	𝑘 = 0.8	 to	assure	a	moderate	slope,	and	𝑟' = 30	 to	assure	that	a	combination	of	
medium	hazard,	exposure	and	vulnerability	(≈ 3)	results	 in	a	medium	risk.	The	Jinal	risk	𝑅	 is	thus	a	
numerical	decimal	value	in	the	range	0	to	5.	

Once	this	procedure	has	been	executed	for	each	combination	of	airport	and	climate	hazard	deJined,	a	
Review	Agent	assesses	the	consistency	of	the	entire	analysis	and	identiJies	potential	concerns.	This	also	
serves	as	evaluation	method	 for	 the	 tool,	 following	 the	concept	of	 ‘LLM	as	a	 judge’24,25,	based	on	 the	
evidence	 that	 LLMs	 have	 some	 ability	 to	 express	 their	 internal	 conJidence	 level	 when	 generating	
content26.	The	combinations	of	climate	hazard-airport	that	are	Jlagged	are	subsequently	reviewed	by	
thematic	 agents,	 who	 are	 speciJically	 instructed	 to	 repeat	 the	 analysis	 while	 incorporating	 the	
observations	made	by	the	Review	Agent.	



Thematic	agents	
Each	thematic	agent	has	been	augmented	with	the	capability	to	interact	with	a	set	of	tools	suitable	for	
the	given	task:		

• The	Exposure	Agent	can	retrieve	key	environmental	factors.		
• The	Vulnerability	Agent	can	conduct	online	research	on	the	internet	and	provide	a	concise	summary	

of	the	Jindings.	
• The	Hazard	Agent	has	the	capability	to	access	a	large	dataset	of	gridded	climate	indicators	at	high	

resolution	 (0.25°x0.25°	 latitude	 x	 longitude),	 derived	 from	 an	 ensemble	 of	 CMIP6	 models	 and	
distributed	by	the	World	Bank	Climate	Change	Knowledge	Portal27.	

	

Figure	 1	 -	 Risks	 Identi,ied	 in	 the	 Initial	 Analysis.	 To	 enhance	 the	 representation,	 the	 ,inal	 risk	 has	 been	
categorized	into	,ive	classes	(Lowest,	Low,	Medium,	High,	and	Highest)	based	on	the	numerical	risk	result,	which	
was	previously	on	a	scale	of	0	to	5.	Black	circles	indicate	the	results	that	were	,lagged	by	the	Review	Age

	

Case	study	
We	applied	the	tool	to	a	set	of	seven	Italian	Airports:	Milano	Malpensa,	Torino	Caselle,	Venezia	Marco	
Polo,	 Bologna	 Marconi,	 Roma	 Fiumicino,	 Cagliari	 Elmas,	 Napoli	 Capodichino,	 and	 Palermo	 Falcone-
Borsellino.	We	 extended	 the	 analysis	 on	 four	 climate	 hazards:	 heat	waves,	 cold	waves,	 drought	 and	
extreme	rainfall.	Additionally,	we	speciJically	requested	the	Hazard	Agent	to	focus	the	analysis	on	the	
scenario	SSP	2-4.5	for	the	year	2050.		

The	initial	iteration	of	the	tool	engages	all	thematic	agents	for	each	combination	of	Airport	and	Climate	
Hazard.	Subsequently,	the	Risk	Synthesis	Agent	assigns	scores	to	each	determinant	(Hazard,	Exposure,	
and	Vulnerability),	and	the	Jinal	risk	is	computed	based	on	Eq.	1.	Finally,	the	Review	Agent	identiJies	
critical	analysis	that	necessitates	control	(Figure	1).	

The	Review	Agent	identiJied	six	analysis	areas	that	required	revision.	Five	of	these	areas	resulted	in	an	
escalation	of	the	overall	risk	score,	while	one	area	led	to	a	reduction	(Figure	2).



	

	

Figure	2	-	Final	Risks	after	the	reanalysis	triggered	by	the	Review	Agent.	Arrows	quanti,ies	the	changes	in	the	
Final	Risk	after	the	reanalysis.	

Conclusion		
Addressing	climate-related	risks	is	a	multifaceted	subject	that	necessitates	an	initial	analysis,	commonly	
referred	to	as	a	Climate	Change	Risk	Assessment.	This	analysis	demands	multidisciplinary	expertise	and	
the	delineation	of	an	analysis	context	that	presents	substantial	challenges	to	Climate	Services	providers.		

In	this	research,	we	developed	an	AI-powered	MAS	based	on	LLMs	to	conduct	this	type	of	analysis.	Our	
approach	is	grounded	in	the	risk	framework	outlined	by	IPCC-AR6.	We	have	incorporated	three	distinct	
thematic	agents,	each	with	specialized	capabilities	 for	assessing	Exposure,	Vulnerability,	and	Hazard.	
These	assessments	serve	as	the	basis	for	semi-quantitative	evaluation	of	the	overall	risk.			

This	approach	has	facilitated	the	integration	of	diverse	data	sources,	including	a	substantial	repository	
of	climate	indicators’	projections	and	unstructured	information	obtained	through	web	research,	into	a	
seamless	workJlow.	Leveraging	the	textual	capabilities	of	LLMs,	each	stage	of	the	process	is	accessible	
to	a	human	reviewer,	thereby	mitigating	the	black	box	phenomenon.		

It	 is	noteworthy	 that	 this	 aspect	 is	not	 a	 secondary	 consideration.	Climate	Change	Risk,	particularly	
within	the	context	outlined	by	the	IPCC	AR6,	is	a	highly	subjective	and	context-dependent	process.	In	
such	a	scenario,	the	comprehension	of	the	underlying	factors	that	inJluence	the	outcomes	holds	greater	
signiJicance	than	the	outcomes	themselves.	
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