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Abstract: 

Climate change has led to an increase in extreme rainfall events in South Korea, resulting in intensified 

soil erosion and prolonged turbidity in dam reservoirs. This study aims to develop and evaluate an 

advanced turbidity prediction system that integrates a process-based water quality model (CE-QUAL-

W2) with artificial intelligence and machine learning (AI/ML) models to address the limitations of 

traditional physical models. Focusing on the North Han River basin (South Korea), we constructed CE-

QUAL-W2 model to generate training data for a Process Guided Deep Learning (PGDL) model. The 

PGDL approach enhances prediction accuracy while adhering to physical principles. In addition, we 

developed and compared various machine learning models for predicting inflow turbidity in dam 

reservoirs and water treatment plants. An integrated extreme rainfall-watershed runoff-turbidity 

prediction model is established, incorporating realistic scenarios based on climate change-induced 

rainfall pattern alterations. This model generates short-term runoff and turbidity prediction data. 

Additionally, we developed a user-friendly prototype program for turbidity prediction, featuring an 

intuitive interface and visualization tools for practical application by water resource managers. The 

resulting models and program serve as scientific tools for predicting and responding to turbidity events 

caused by extreme rainfall. This research contributes to improving water resource management 

efficiency, maintaining aquatic ecosystem health, and enhancing adaptability to climate change-induced 

alterations in the water environment. 
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Summary statement 

This study develops an advanced turbidity prediction model integrating physical and AI/ML approaches 

for extreme rainfall events in South Korea, aiming to enhance climate change adaptation in the face of 

increasing environmental challenges. 

 

1. Introduction 

Recent increases in extreme rainfall events, driven by climate change, have intensified soil erosion 

in watersheds and river systems, thereby elevating suspended sediment concentrations and turbidity in 

rivers and reservoirs (Mimikou et al., 2000; Neff et al., 2000; Bouraoui et al., 2004). During such events, 

turbid water typically carries a diverse range of materials—including eroded and transported soil, 

resuspended sediments from riverbeds, and attached algae—underscoring the need for advanced 

modeling tools that link rainfall, watershed runoff, and turbidity transport. 

Concurrently, rapid advancements in Fourth Industrial Revolution (4IR) technologies—most 

notably artificial intelligence (AI), machine learning (ML), big data analytics, and unmanned aerial 

systems—present new opportunities for accurate and timely turbidity monitoring and forecasting. 

Among data-driven models (DDMs), deep learning has demonstrated exceptional capacity for short-

term predictions by leveraging extensive datasets; however, its inherent “black-box” nature can hinder 
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the incorporation of fundamental conservation laws (e.g., mass, momentum, and energy). To address 

these shortcomings, an emerging strategy—referred to as “theory-based data science”—seeks to 

integrate process-based models (PBMs) with DDMs. Prominent applications include predicting lake 

water temperature (Read et al., 2019) and phosphorus levels (Hanson et al., 2020), highlighting the 

efficacy of combining mechanistic and data-driven approaches. 

Although PBMs accurately simulate the spatiotemporal dynamics of turbidity by solving governing 

equations, they are often hampered by lengthy computation times and high sensitivity to initial and 

boundary conditions. To bridge these gaps and enhance predictive reliability, a hybrid turbidity 

forecasting framework that unites PBM insights with AI/ML techniques is indispensable. This study 

employs such an integrative approach to refine turbidity prediction and formulate a robust management 

strategy, particularly under intensifying hydroclimatic fluctuations. 

 

2. Materials and Methods 

This study was conducted in the Soyang Dam watershed and the North Han River basin in South 

Korea (Fig. 1), where turbidity problems due to extreme rainfall events continuously occur. The 

mechanical model and data-based model used for PGDL model development are CE-QUAL-W2 and 

LSTM (Long Short-Term Memory), a recurrent neural network deep learning model, respectively. Each 

model was calibrated and trained using temperature and turbidity data measured at the Paldang Dam 

and Soyang Dam from January to December 2020. Water temperature and turbidity data were collected 

from daily measurements provided by the Water Environment Information System of the Ministry of 

Environment and real-time automatic monitoring networks operated by K-water (Korea Water 

Resources Corporation). Real-time automatic monitoring data were collected hourly and converted to 

daily average values for model application. The main algorithm of the PGDL model for temperature 

and turbidity prediction optimized parameters by adding energy and mass balance terms from the 

mechanical model as constraints to the objective function (or loss function) of the LSTM model, 

imposing penalties when prediction results did not satisfy physical conservation laws. For the machine 

learning model to improve the boundary condition turbidity data of the CE-QUAL-W2 model, the 

LSTM model was used, with the Stepwise Multiple Linear Regression (SMLR) model as a comparison 

model. These models were trained using turbidity, flow rate, and precipitation data collected from the 

study area. To enable fair performance comparison between models, the period from January 1, 2016, 

to December 31, 2019, was set as the training period, and the period from January 1, 2020, to December 

31, 2020, was set as the validation period for all models.  

 

Figure 1 Study area map of the North Han River basin including Soyang Dam watershed in South Korea 

 

Additionally, to predict turbidity at water treatment plants that intake water from the Paldang Lake, 



AI/ML models including Random Forest (RF), Support Vector Machine (SVM), XGBoost, Multiple 

Linear Regression (MLR), and Bidirectional LSTM (Bi-LSTM) were developed and evaluated using 

the same datasets. 

 

3. Results and Discussion 

 

3.1 Turbidity prediction using a hybrid process-based CE-QUAL-W2 and AI/ML approach 

Comparative analysis of the LSTM model against the linear regression-based SMLR model 

yielded significant findings. Through detailed analysis of various error indicators including RMSE 

(Root Mean Square Error), NSE (Nash-Sutcliffe Efficiency), and adjusted coefficient of determination 

(Adj. R²) during both training and validation phases, the LSTM model outperformed the SMLR model 

in predicting turbidity within reservoirs. On average, RMSE was 1.34 times lower, while NSE and 

Adj.R² improved by 4.36 and 1.28 times, respectively. We evaluated the LSTM model's applicability 

as a boundary condition turbidity prediction model by integrating it with the W2 model, using W2 

model results with SMLR model turbidity predictions as a comparison. Results demonstrated that using 

the LSTM model as a boundary condition prediction model outperformed the SMLR model in reservoir 

turbidity prediction, with RMSE and RMSEN being 4.07 and 1.73 times lower on average, while model 

efficiency (measured by NSE values) improved by 1.46 times (Fig. 2). 

 

    

Figure 2 Comparison of turbidity profiles in Soyang Lake: LSTM vs. SMLR simulations 

 

3.2 Turbidity prediction using a process-guided deep learning model 

To evaluate the turbidity prediction performance of the PGDL model in Soyang Lake, we 

compared observed turbidity, PGDL model predictions (red line), and W2 model simulations (black 

line) together (Fig. 3). The PGDL model appropriately reproduced the measured turbidity values at 

different depths during both training and validation periods. The errors between predicted and observed 

values in PGDL model training and validation data were RMSE = 0.3 ~ 22.1 NTU, RMSEN = 10.5 ~ 

34.8%, and RMSE = 0.4 ~ 23.7 NTU, RMSEN = 11.6 ~ 36.4%, respectively, demonstrating superior 

prediction performance compared to the W2 model (training data: RMSE = 5.0 ~ 22.8 NTU, RMSEN 

= 9.5 ~ 38.4%; validation data: RMSE = 5.3 ~ 23.9 NTU, RMSEN = 9.6 ~ 39.3%). 



    
Figure 3 Depth-specific turbidity comparison among observed data, PGDL model predictions (red 

line), and W2 model simulations (black line) in Soyang Lake 

 

3.3 Turbidity prediction in water treatment plants using AI/ML models 

In predicting turbidity one day in advance (t+1), the LSTM and RF models achieved the highest 

performance, both with an R² of 0.77, closely followed by XGBoost (R² = 0.76) and Bi-LSTM (R² = 

0.74). For two-day predictions (t+2), the LSTM model showed the highest accuracy (R² = 0.70), with 

XGBoost (R² = 0.69) and Bi-LSTM (R² = 0.64) performing similarly or slightly lower. Additionally, 

RF demonstrated the lowest error (RMSE = 6.5 NTU) for the one-day lead prediction, while LSTM 

exhibited the lowest error (RMSE = 7.8 NTU) for the two-day forecast. Notably, the MLR, XGBoost, 

RF, and SVM models showed a tendency to overfit, indicated by higher errors on the validation set 

compared to the training set, with prediction errors increasing as the forecast lead time extended. 

 

Table 1 Performance of AI/ML models in predicting water treatment plant turbidity by lead time 

Model 
Lead 

time 

(day) 

Train Validation Test 

RMSE 

(NTU) 
R2 

RMSE 

(NTU) 
R2 

RMSE 

(NTU) 
R2 

MLR 
t+1 6.4 0.83 18.6 0.41 7.5 0.69 

t+2 10.1 0.61 17.9 0.30 12.7 0.39 

XgBoost 
t+1 3.8 0.94 8.6 0.73 7.4 0.76 

t+2 7.8 0.76 8.8 0.69 8.8 0.69 

RF 
t+1 3.1 0.96 17.9 0.46 6.5 0.77 

t+2 4.2 0.93 17.5 0.32 10.7 0.57 

SVM 
t+1 4.4 0.92 18.0 0.45 8.3 0.62 

t+2 5.5 0.86 15.7 0.45 12.4 0.42 

LSTM 
t+1 8.0 0.71 8.3 0.69 8.3 0.77 

t+2 9.0 0.64 9.3 0.62 7.8 0.70 

Bi-LSTM 
t+1 8.6 0.65 8.9 0.63 7.7 0.74 

t+2 9.3 0.62 9.5 0.61 9.4 0.64 

 

3.4 A user-friendly, integrated turbidity prediction system 

The integrated system combines three independently developed models—Precipitation Model, 

Watershed Runoff Model, and Turbidity Prediction Model in Rivers and Reservoirs—into a user-

friendly, graphical user interface (GUI)-based application. These models operate sequentially, with the 

outputs from each preceding model serving as inputs for the next. In addition, the GUI incorporates 

external datasets required for model inputs, which are directly retrieved from officially published 



sources via Application Programming Interface (API) integration. This structure ensures seamless 

accessibility, practical usability, and intuitive operation for researchers and water resource management 

practitioners. 

 

 
Figure 4 Inter-model coupling diagram in the turbidity prediction program (GUI) 

 

4. Conclusions 

This study developed and validated an integrated turbidity prediction approach combining process-

based modeling (CE-QUAL-W2) and advanced AI/ML methods (LSTM, PGDL), significantly 

enhancing prediction accuracy compared to traditional models. The hybrid models showed superior 

performance in simulating turbidity at various depths in reservoirs and predicting inflow turbidity at 

water treatment plants. The developed user-friendly prediction platform facilitates practical turbidity 

management during extreme rainfall events, supporting effective water resource management and 

enhancing resilience against climate-induced water quality issues. 
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